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ABSTRACT 

Mineral commodities are the backbone of every nation as they contribute to the Gross domestic 

product (GDP), industries (as raw materials), and foreign exchange. Coal production in India 

is 724.71 MT (Million Tonnes) in year 2015. The production target has been increased by the 

government of India to 1.5 billion tonnes by 2022. Opencast mining in 2015 contributed to 

639.234 MT (88%) of total coal production in India. This increased demand of coal shall 

compel the mine owner to operate under greater stress to increase the production rate. So, there 

will be situations arising that the mine owners may have to extract coal near human habitats. 

Eight of the major mines were selected and necessary care was taken that all the geological 

areas occurring in the Jharia coalfield region was covered. Various blast design parameters 

such burden, hole depth, spacing, charge per delay(CPD), and scaled distance were selected 

for the study of ground vibration. Data mining methods such as random forest and artificial 

neural networks(ANN) has been used for the prediction of peak particle velocity(PPV). The 

model formed by the two methods was compared and validated by selecting another two mines. 

The results obtained by random forest was superior to ANN. Also, a line at 95% confidence 

interval for the predicted PPV values is drawn to ensure greater safety. With 95% confidence 

and universal blast induced ground vibration prediction model for jharia coalfield has been 

developed. This model will help the blasting engineers operating in jharia coalfields in precise 

prediction and better control over blast induced ground vibration. The concept of this study 

can be used for generation of blast induced ground vibration prediction models for different 

coalfields also. 
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1. INTRODUCTION

Minerals play an important role in the growth of a nation. 

The demand for the minerals is increasing rapidly in the world. 

To cope up with the growing demands of the minerals large-

scale mines are being planned. Though the advancement of 

rock cutting machinery has taken place still applicability to 

various geology is not known and rate of production is lower 

than drilling and blasting and it is also costly. Blasting 

performance is directly related to the characteristics and 

efficiency of the explosives used [1]. Blasting requires large 

amount of explosive and proper blast design for efficient 

results. Blasting is economical and applicable in almost all the 

geological conditions but it has many disadvantages too. Only 

25–30% of the explosive energy is utilized for breaking and 

displacement of rocks [2] and rest of the energy creates 

nuisance. The negative hazards of blasting are air blast, ground 

vibration, noise backbreak, overbreak, endbreak and flyrock. 

The major activities which contribute to ground vibration are 

blasting, movement of machinery. These hazards can affect 

the structures nearby and also cause a disturbance in the water 

table and wells and dwellings nearby. It may also cause fear, 

and annoyance, and may lead to complaints, work delays and 

legal processing by the people staying in the nearby. Human 

beings response to vibration levels at much lower than the 

levels established as Structural damage thresholds [3].The 

magnitude of ground and structure vibrations caused by 

blasting depends on the blasting methods, soil and rock 

medium, heterogeneity of soil and rock deposit at the site, 

distance from the source, characteristics of wave propagation 

at a site, dynamic characteristics of soil and rocks, response 

characteristics of fractures and susceptibility rating of the 

structures [4]. Ground vibrations factors that determine the 

degree of house shaking are ground vibration amplitude (peak 

particle velocity), its duration and its dominant frequency and 

the response frequencies of the structure [5]. One of the major 

problem in blasting is to eliminate ground vibration [6-7]. In 

India DGMS have issued circular No. 7 in 1997 for ground 

vibration levels. 

It has been inferred from literature that peak particle 

velocity (PPV) is generally a good index of damage to 

structure. Blast-induced ground vibrations are characterized 

by two important parameters, i.e. the peak particle velocity 

(PPV) and frequency. The relationship between PPV and 

scaled distance (D) can be written as 

𝑣 = 𝑘𝐷𝑏 

where, 

v = PPV (m/s); 

D = Scaled distance ( 𝑚 √𝑘𝑔⁄  ) 

k and b = Site constants. 

Scaled distance which is defined as the ratio of distance 
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from charge point, R (m), to the square root of charge per delay, 

Q (kg).  

Due to the rising human population which has led to the 

expansion of human habitats and come near to the vicinity of 

operating mines. The demand for minerals has also increased 

rapidly with time. So, we have to increase our production 

without compromising safety. Due to the stringent 

environmental protection laws and growing awareness among 

the people causes confrontaion between local residents and 

mine management. This causes lock downs and increases the 

lock in period of minerals. Sometimes the mining activity is 

stopped which causes great loss to the nation as the mineral 

resources remain locked. Many researchers have come up with 

empirical methods and machine learning tools to predict 

ground vibration. ANN is a machine learning tool which has 

been used to predict ground vibration so that they can 

overcome the limitations of empirical equations [8-12]. 

Genetic algorithm [13], Random forest [14] and support vector 

machines [14-15] have also been in trends to predict ground 

vibration by various researchers. Statistical tools, such as 

multivariate regression analysis [1, 9] is also used to predict 

ground vibration. 

 

1.1 Ground vibration 

 

Ground vibration consideration is gaining significance with 

decreasing level of people tolerance of vibration, introduction 

of new environmental legislation, increasing use of equipment 

sensitive to vibration, ageing of existing buildings and 

expanding construction sites. Vibration consideration involves 

its source, propagation path and its recipient. The intensity of 

ground vibration depends on various parameters which can be 

divided into two classes controllable and non-controllable 

parameters. Ground vibrations are the technical term for 

describing the vibrations caused by the man-made activities. 

Wave parameters are the properties used to describe the wave 

motion such as amplitude, period, crest, trough and frequency. 

Vibration parameters are the physical quantities used to 

describe vibration. These are displacement, velocity, 

acceleration and frequency. A seismograph system measures 

three mutually perpendicular components of ground motion 

designated vertical, longitudinal and transverse. 

Ground vibrations are composed of mainly two types of 

waves known as body waves and surface waves. The name 

body waves are given as they propagate through the rock and 

surface waves travel at the surface of the rock as they do not 

penetrate through the rock. 

The body waves can be further classified into two categories 

that is P wave and S wave. Rayleigh wave generated by the 

interaction of P- and S-waves at the ground surface is termed 

as the surface wave [16]. It should be noted that S-wave 

component plays an important role in damage to rock or 

adjacent structures [17], and it might induce considerable 

amplitude of vibration in specific directions compared to P-

wave. 

The transmitting of vibration energy occurs because ground 

tends to reach the state of a minimum energy when disturbed 

by vibration [18]. Ground disturbance by a vibration source 

causes occurrence of stress waves, which transmit the source 

energy in the form of energy flux. The total energy-flux 

density Eflux per unit time (i.e. wave power) in direction of 

wave propagation through wavefront area dS is in the case of 

an isotropic stress-strain relationship in a non-dispersive 

(closed) system [19].  

2. EXPERIMENTAL SITES 

 

In Jharia coalfields many of the mines are located near to 

the human habitat and other sensitive structures. There are 

situations arising often that there is a face off between the mine 

management and the local peoples. This often leads to losses 

as it stops the work of the mines. So to avoid this situations in 

future there was a need to develop a model or formula to get 

the safe distance for blasting. So for this study 8 of the major 

coalmines located in the Jharia coalfields were selected for the 

study and model preparation using ANN and random forest. 

The models formed were than validated by selecting another 

two mines from the Jharia coalfield. Blast design parameters 

such as burden, spacing, hole depth, CPD and scaled distance 

were selected for the study. PPV of the selected mines were 

monitored in the field with vibrometer.  

 

2.1 Mine details 

 

Mine 1 

The mine is located between a latitude 23043’24’’ north to 

23043’48’’ and longitude 85034’33’’ east to 85034’40’’ at a 

distance of about 17 KM from the Sub Regional office this 

Directorate at Ramgarh. Hazaribag and Ranchi is about 35KM 

and 60KM respectively. The mine lies in the north dipping 

southern flank of the southern sub-basin of the west Bokaro 

Coalfield and its leasehold area. Presently five coal seams i.e. 

seam III, IV, V, VA, VI are being worked under Mine 1. The 

overburden comprises of hard to medium hard sandstone.    

Mine 2 

The major part of the area is under soil cover. Rocks of 

Barakar Formation lie below the soil cover and are exposed in 

patches in the northern and north-western part. These rocks are 

having faulted contact with the rocks of Barren Measure 

Formation in southern part of the area.  

(I) Strike and Dip: The strike of the seam is generally 

trending NE-SW in the western part, E-W in the central part 

and swings to NW-SE in the eastern part. The dip is generally 

southerly trending and ranges from 40 in the central part to 

about 70 in the western corner of the project area. 

(II) Faults: Three major faults are encountered in the area. 

The throw of these faults varies up to 240m. 

Mine 3 

The Mine C is located in the eastern-central part of Jharia 

Coalfield in Dhanbad district of Jharkhand. The Mine ‘C’ lies 

between latitude 23o 42’14” to 23˚43’59”N and longitude 

86˚24’43” to 86° 26' 45"E. The area is covered under Topo 

sheet No- 73-I/6. The mine area is covered by various types of 

rocks belonging to Barakar Formation of Lower Gondwana 

group under a moderately thick cover of soil, alluvium and 

sandy soil. The major portion of the cluster is covered by 

alluvium and sandy soil of recent age,which range in thickness 

from 1.6 m to 1.8 m and occupy lower grounds.Metamorphic 

rocks cap the higher grounds, mainly in the northern part of 

the block.The thickness of the top formation up to weathered 

mantle varies from 0 to 11.60 m,made up of alluvium, sandy 

soil with consolidated weathered Barakar sandstone and is 

underlain by the coal-bearing rocks of Barakar Formation. 

Barakar formation, occurring below the soil covers, consists 

of sandstone,argillaceous sandstone, arenaceous shale, 

carbonaceous shale, grey shale and coal seams. 

Mine 4 

Mine 4, located in BCCL. All the seams are presently being 

excavated by Surface miner. Three surface miners have been 
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deployed in the project for winning the coal .However, some 

portions of the coal seam left by the surface miners is being 

excavated through conventional blasting. The gradient of the 

seams is 1 in 20.Transportation of coal is being done by pay 

loader – tipper combination. 

Mine 5 

The basic structure of the concerned block is simple. The 

general strike in the area is almost north-south. The average 

dip varies from 5o to 10o towards west. There are four coal 

seams occurring in the concerned blocks, viz. Kota, Turra, 

Purewa bottom and Purewa Top seams in ascending order. The 

bottom-most seam (Kota seam) has been encountered only in 

few boreholes. It occurs 68 to 100m below Turra Seam. The 

thickness of the Seam varies from 2.2 to 3.0m (including dirt 

bands). Kota seam is currently not being considered for mining. 

Mine 6 

The Mine 6 Opencast project falls within Halong and South 

geological blocks. It is located in the south central part of 

North Karanpura Coalfields and is included in Survey of India 

toposheet no. 73 E/2 and 73 A/14 in Ranchi district of 

Jharkhand. The coal bearing rocks and the coal seams 

occurring within the mine area belong to the Barakar 

Formation of the Lower Gondwana Group. The contact 

between the coal bearing rocks and metamorphics in the South 

is faulted. The general strike of the beds in the part of Karkata 

block, is in WNW-ESE. The gradient varies from 1 in 9 to 1 

in 4 due South. 

Mine 7 

Mine 7 Open Cast Project is located over Kulda Block of-

of IB valley Coalfield. In Mine 7 Block, Rampur seam, and 

Lajkura seam occurs in the Barakar formations and IB seam 

occurs in Karharbari formation of Lower Permian Age. Strike 

of the Strata is roughly NW-SE. The dip is generally 7o 

towards southwest. Dip is slightly higher in southern part and 

near faults compared rest of the area. There are three coal 

seams viz. Ib, Rampur & Lajkura. Ib is the bottom most coal 

seams and spat into three sections viz. Ib Top, Ib Middle & Ib 

Bottom. Rampur seam is splitted into five sections namely 

Rampur-I, Rampur-II, Rampur-III Top, Rampur-III Bottom, 

Rampur –IV& Rampur-V. Lajkura is also a thick seam and 

splitted into four sections viz.Lajkura-I, Lajkura-II, Lajkura-

III & Lajkura-IV. 

Mine 8 

Almost entire block has been covered by Barakar 

formations containing five main coal seams which are 

designated as seam – I to seam – V in ascending order. The 

strike of the formations in the Magadh block are NE-SW 

which swings to ENE-WSW in the eastern part. The dip of the 

formations generally varies from 40 to 90 towards south. 

Magadh block has been intersected by two faults (F1 & F2). 

The fault F1 forms the eastern boundary of the Magadh block 

is a major fault trending WNW-ESE having maximum throw 

of 120 m the other fault F2 is a small oblique fault trending 

NNE-SSW having a throw of 7 m towards west. 

 

2.1.1 Mine location 

The figure 1 shows the details of all the mines selected for 

this study. After the study the two site constants were found 

out. It also shows the mines A,B where after the study the trial 

blasting is carried out. 

 

 
 

Figure 1. Location of selected mines in Jharia coalfield for 

development of model 

 

2.2 Data collection 

 

Parameters like burden spacing and hole depth are the 

characteristic property of the mine that needs to be taken as 

practised values in the mine. The charge per delay of the blast 

was also taken into consideration as an input parameter as it 

plays a important role in generation of ground vibration. The 

measurement point where the instrument was kept for 

monitoring is taken as distance as one of the input parameters. 

The details of compressive strength has been obtained by using 

N-type Schmidt hammer value Based on this the strata was 

divided into four classes like from soft medium hard and very 

hard into 0.25 0.5 0.75 and 1.0. The classification of the strata 

was done by calculating the uniaxial compressive strength of 

the strata as shown in the table 1. 

 

Table 1. Schmidt hammer rebound index and compressive 

strength of rocks encountered 

 
Serial 

no. 

Schimdt 

hammer 

rebound 

index 

Compressive 

strength(Mpa) 

Class Value 

assigned 

1 47-56 >50 Very 

hard 

1 

2 36-46 40 Hard 0.75 

3 29-35 30 Medium 

hard 

0.5 

4 23-28 20 Soft 0.25 

 

Table 2. Range of input and output parameters 

 
Parameter Unit Symbol Description Range Mean Standard deviation 

Hole depth M D Input 3 – 7 5.638 0.654 

Burden M B Input 2 – 5 3.549 0.525 

Spacing M S Input 2.5 – 6 4.389 0.689 

Charge Per delay kg/m3 Q Input 15.1 – 80.2 48.029 12.105 

Distance M D input 45 – 950 206.754 171.727 

Peak particle velocity mm/s P Output 0.5 – 33.84 6.689 5.519 
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2.3 Determination of interdependence of input parameters 

 

2.3.1 Covariance 

Covariance is a measure of how changes in one variable are 

associated with changes in another variable. Specifically, 

covariance measures the degree to which two variables are 

linearly associated. However, it is also often used informally 

as a general measure of how monotonically related two 

variables are. The covariance of depth, burden, spacing, CPD, 

distance and PPV was determined using Excel software of 

Microsoft office. 

 

Table 3. Covariance of parameters 

 
  Depth Burden Spacing CPD Distance PPV 

Depth 0.426696      

Burden 0.249559 0.274429     

Spacing 0.352571 0.344026 0.472872    

CPD 6.875815 4.432095 6.935198 146.0217   

Distance 18.5394 26.14715 33.22899 535.8109 29386.75  

PPV 0.409493 0.244808 0.464917 7.901487 -484.16 30.35759 

The table 4 indicates that the stated parameters are having 

significant influence on blast induced ground vibration. 

 

2.3.2 Correlation 

Correlation is a statistical measure that indicates the extent 

to which two or more variables fluctuate together. A positive 

correlation indicates the extent to which those variables 

increase or decrease in parallel; a negative correlation 

indicates the extent to which one variable increases as the 

other decreases. The correlation of depth, burden, spacing, 

CPD, distance and PPV was determined using Excel software 

of Microsoft office. 

 

Table 4. Correlation of variables  

 

 Depth Burden Spacing CPD Distance PPV 

Depth 1      

Burden 0.729289 1     

Spacing 0.784902 0.955002 1    

CPD 0.871077 0.700141 0.8346 1   

Distance 0.165562 0.291161 0.281884 0.258659 1  

PPV 0.113777 0.084816 0.122707 0.118677 -0.5126 1 

Negative value relation between the distance and the PPV 

shows that it is inversely proportional. As we move further 

from the blasting site the high frequency waves attenuates and 

loses its strength. Positive values indicate that they are directly 

proportional to each other. 

2.3.3 Analysis of variance (ANOVA) 

Analysis of variables (ANOVA) was obtained for the 

parameters depth, burden, spacing, CPD, distance and PPV by 

using Excel software of Microsoft office. 

 

Table 5. ANOVA table 

 
Source of 

Variation 

SS(Sum of 

Squares) 

Df (Degrees of 

freedom) 

MS(Mean sum 

of squares) F ( F-statistics) P-value Fstastics 

Between 

Groups 9277869 5 1855574 375.2627 1.33E-271 2.219349 

Within Groups 8425825 1704 4944.733    

       

Total 17703694 1709     

The P value obtained in the table is small as there has been 

random sampling of data from 8 different mines using 

different blast design patterns.  

 

 

3. WORKING STEPS OF RANDOM FOREST 

 

The random forest algorithm uses a standard machine 

learning technique known as “decision tree”. Input is entered 

at the top in the decision tree and as it travels below the tree 

the data gets grouped into smaller and smaller groups. In this 

manner all the data set moves below the tree and its 

relationship will be calculated for each stage. If two stages 

come at same point their nearness will be increased by one. At 

the last implementation stage the relationship are normalized 

by dividing the number of trees [20]. These relationships help 

in substituting missing data finding out outliers. The random 

forest tree has subsequent working step to training a system 

Sample N cases at random with replacement to create a subset 

of the data. This subset of data should be about 85% of the 

total dataset. 

1. At each node, for some m- number, m predictor variables 

are chosen at random from all the predictor variables. The 

predictor variable provides the best split, according to 

some objective function. The binary split will be taking 

place on that node. 

2. At the next node, choose another m variables at random 

from all predictor variables and repeat it as same. 

3. Depending upon the value of m, there are three slightly 

different systems 

1. Random splitter selection: m=1 

2. Breiman’s bagger: m = total number of predictor 
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variables 

3. Random forest: m << number of predictor variables. 

Brieman suggests three possible values for m: ½√m, 

√m, and 2√m 

Random decision forests correct for decision trees habit of 

overfitting to their training set, and final prediction can simply 

be the mean of each prediction [21]. 

 
 

Figure 2. Schematic diagram showing the information flow 

in random Forest algorithm 

 

In the present study a total of 285 blast data was considered. 

The data available was divded into two parts one was training 

datset and other was testing dataset. Training dataset consisted 

of 85% of the data and was used to train the data set and the 

remaining 15% data was used as test dataset and their values 

were predicted by the model formed which was compared with 

actual results obtained on the ground for variation. 

 

3.1 Network architecture  

 

The prediction of ground vibration has been monitored and 

documented with a set of 285 data set points. These data set is 

examined and categorised employing random forest algorithm 

with k fold crossover validation to verify the regularity and 

grade of the data. The classifier eventually divided into 

training data set to train the model and testing data set to judge 

the prediction model. The original data sample is randomly 

divided into k equal subparts With k subsamples a single part 

of data is kept as the validation data for testing the model while 

remaining k 1 parts are used as training purpose for the model. 

This crossover validation procedure is then carried out k times 

where each k subparts of data used exactly once as the 

validation data. The k results from the folds can then average 

to produce a single predicted value. In this study we have 

implemented 10 fold crossover validation for prediction of 

blasting data. With different coefficient of determination such 

as correct classified accuracy, incorrect classified accuracy, 

mean absolute error and mean square errors. The output results 

clearly show that the random forest-based model has the 

magnitude to predict the peak particle velocity shown in table 

6. 

 

Table 6. Analysis result by random forest 

 
Serial no. Methods Values 

1 Correlation 

coefficient 

0.9836 

2 Kendall's tau 0.7794 

3 Spearman's rho 0.9187 

4 Mean absolute error 0.7464 

Table 7. Predictions of PPV made by random forest 

 
Serial No. Actual Predicted Error 

1 3.422 3.0652 -0.819 

2 0.641 1.0743 -0.324 

3 4.58 2.9011 1.05 

4 4.839 3.3094 -0.006 

5 2.53 3.1528 -0.063 

6 3.297 3.6182 -0.277 

7 5.842 5.7608 -0.529 

8 4.529 5.196 -0.493 

9 3.854 4.2895 -1.053 

10 7.94 8.7782 0.186 

11 3.234 1.7498 -2.201 

12 6.507 6.3485 0.829 

13 4.202 3.8522 0.155 

14 1.428 1.60275 -2.527 

15 2.08 1.8445 0.152 

16 4.223 3.5071 -0.77 

17 19.72 18.7092 7.435 

18 4.328 3.2826 0.022 

19 2.66 3.6745 -0.343 

20 4.943 5.2636 -0.573 

21 2.812 3.7337 -1.46 

22 5.841 6.234 0.671 

23 4.07 3.9126 1.092 

24 26.5 24 1.117 

25 9.095 11.8842 -0.56 

26 8.071 9.034 0.197 

27 5.182 5.5794 0.056 

28 3.694 4.6068 -0.054 

29 6.706 7.5934 -1.183 

30 2.31 1.9301 0.22 

31 7.972 7.5934 0.075 

32 2.658 2.906 -0.023 

33 2.36 3.1826 0.531 

34 2.843 2.0203 0.021 

35 7.14 6.4485 0.78 

36 4.982 3.1528 0.087 

37 2.768 2.6558 0.175 

38 2.306 2.2106 -0.008 

39 2.93 4.9436 1.595 

40 5.102 3.8376 -0.365 

41 2.693 4.7906 -0.25 

42 5.015 6.0201 -1.182 

43 6.944 6.501 0.584 

 

 
 

Figure 3. Graph between predicted PPV by random forest 

and scaled distance 

 

Figure 3 shows relation between the scaled distance and 

predicted PPV by random forest method. Series 1 represents 

the best fit curve on the predicted values with R2 value of 0.82 
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while series 2 is the 95% prediction curve for PPV prediction 

with 95% confidence interval. 

 

3.3 Artificial Neural Network (ANN) 

 

Muhammad  & Shah (2017) used ANN to control backbreak 

in limestone mines [22]. Raymond (2016) successfully used 

ANN to predict blast induced ground vibration [9]. 

Khandelwal & Singh (2009), used and successfully applied the 

neural network method in the field of blasting and waste dump 

stability [2]. The blast vibration was monitored and 

documented into 285 blast dataset. This data was divided into 

three parts eventually training dataset (70%), validation 

dataset (15%) and test dataset (15%). The complete structure 

and architecture of the network are illustrated in a flowchart as 

shown in figure 4. 

 

 
 

Figure 4. Architecture of ANN process 

 

 
 

Figure 5. Showing the regression coefficients during training 

testing and validation 

3.3.1 Network training 

The training algorithm of the neural network is necessary to 

interpret the results of the network which include initialization 

of weights, back-propagation errors and updating weights and 

biases [23].  

Levenberg – Marquadart training algorithm has been used 

in the present study to train the network. The method is the 

fastest method for training with high accuracy and 

convergence speed (MathWorksInc). The behaviour of the 

network depends on both transfer functions and weights 

assigned. There are 3 transfer functions considered i.e. Log-

Sigmoid, Tan-Sigmoid and Purelin function (Fig. 7). The 

output of transfer function is passed to the output layer, where 

it is multiplied by the connection by the connection weights 

between the output layer and hidden layer. Fig. 8 demonstrate 

the structure of back propagation neural network with 1 hidden 

layer and Fig. 9 represents the regression plots of ANN during 

training, testing, and validation process. 

 

3.3.2 Network validation 

The test and validation data set were used to validate the 

designed network. The weight and biases have been obtained 

using training data. After training process, measurement of the 

accuracy of 120 data sets, were simulated to, reach final 

outputs and check the accuracy of the model. Validation of the 

model is required to show that the build model is performing 

non-linear analysis properly or not. An R-squared value 

between inputs and output and RMSE were used to check the 

performance of ANN models. The results of ANN models 

(Table 2) shows different coefficient of determination and 

mean square errors. The results clearly indicate that the ANN 

model has the capacity to predict the blast design parameters 

considered as output, very close to measured values and that 

the accuracy is acceptable. 

 

Table 8. Summary of predicted values of PPV for Mine A 

 
Serial No. PPV RF ANN 

1 10.9 12.32 7.645 

2 9.631 7.957 11.142 

3 5.709 6.354 7.257 

4 4.879 4.989 3.124 

5 12.73 11.287 14.587 

6 12.98 10.021 15.987 

7 3.334 4.178 1.549 

8 2.968 3.456 4.12 

9 4.155 1.987 3.974 

10 4.156 5.248 3.543 

11 4.229 5.503 6.55 

12 4.704 5.978 7.025 

13 7.304 8.578 9.625 

14 5.851 7.125 8.172 

15 6.438 7.712 8.759 

16 7.131 8.405 9.452 

17 15.72 16.994 18.041 

18 15.85 17.124 18.171 

19 6.614 7.888 8.935 

20 6.664 7.938 8.985 

 

Figure 6 shows relation between the scaled distance and 

predicted PPV by random forest method. Series 1 represents 

the best fit curve on the predicted values with R2 value of 0.75 

while series 2 is the 95% prediction curve for PPV prediction 

with 95% confidence interval. 
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Figure 6. Graph between the predicted values by ANN and 

the scaled distance 

 

 
 

Figure 7. Structure of back propagation neural network 

 

 

4. ANALYSIS OF RESULTS 

 

The results obtained by both the methods are in acceptable 

range in most of the cases as it is close to the actual value 

obtained on the ground. The predicted values obtained by the 

ranodom forest is found to be more closer to the actual value 

compared to the ANN. Therefore the random forest method is 

found to be more encouraging in prediction as compared to the 

ANN. These prediction methods will help the blast engineers 

to input different blast design combinations and to predict the 

PPV values in advance while conducting the controlled 

blasting near the habitation or structures. This will help in 

selecting the most suitable blast design in which the predicted 

PPV values will be minimum. Further to validate the 

developed model of random forest and ANN total of two 

mines A & B is selected from the Jharia coalfield and total of 

40 blasts were conducted. The PPV was predicted using 

random forest and ANN while actual PPV was monitored in 

the mines. The two site constants were obtained by both the 

methods from the graph. With the help of the two models the 

vibration levels of Mine A & B were predicted and were 

compared with actual ground results. The sample of the data 

comparisons is presented below in the table 8 and 9 

respectively. 

 

Table 9. Summary of predicted values by ANN 

 
Serial No. Actual Predicted Error 

1 3.422 4.241 0.3568 

2 0.641 0.965 -0.4333 

3 4.58 3.53 1.6789 

4 4.839 4.845 1.5296 

5 2.53 2.593 -0.6228 

6 3.297 3.574 -0.3212 

7 5.842 6.371 0.0812 

8 4.529 5.022 -0.667 

9 3.854 4.907 -0.4355 

10 7.94 7.754 -0.8382 

11 3.234 5.435 1.4842 

12 6.507 5.678 0.1585 

13 4.202 4.047 0.3498 

14 1.428 3.955 0.82525 

15 2.08 1.928 0.2355 

16 4.223 4.993 0.7159 

17 19.72 12.29 1.0108 

18 4.328 4.306 1.0454 

19 2.66 3.003 -1.0145 

20 4.943 5.516 -0.3206 

21 2.812 4.272 1.0783 

22 5.841 5.17 -27.933 

23 4.07 2.978 0.1574 

24 26.5 25.38 21.7732 

25 9.095 9.655 -1.7892 

26 8.071 7.874 -0.6283 

27 5.182 5.126 -0.3974 

28 3.694 3.748 -0.9128 

29 6.706 7.889 -0.8874 

30 2.31 2.09 0.3799 

31 7.972 7.897 0.3786 

32 2.658 2.681 0.7279 

33 2.36 1.829 -0.8226 

34 2.843 2.822 -3.1773 

35 7.14 6.36 2.6915 

36 4.982 4.895 1.8292 

37 2.768 2.593 0.1122 

38 2.306 2.314 0.0954 

39 2.93 1.335 -2.0136 

40 5.102 5.467 1.2644 

41 2.693 2.943 -2.0976 

42 5.015 6.197 -1.0051 

43 6.944 6.36 0.443 

 

 
 

Figure 8. Graph between actual and predicted PPV values by 

random forest 

 

 
 

Figure 9. Graph between actual PPV values and predicted 

PPV values by artificial neural network 
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Figure 8 is the graph between actual PPV and predicted PPV 

values by Artificial Neural Network with R2 value of 0.8547 

shows they are in consonance with each other. 

Figure 9 is the graph between actual PPV and predicted PPV 

values by Artificial Neural Network with R2 value of 0.8547 

shows they are in consonance with each other. 

 

 
 

Figure 10. Graph between actual values of PPV for mine A 

Vs scaled distance 

 

Figure 10 shows relation between the scaled distance and 

actual PPV. Series 1 represents the best fit curve on the 

predicted values with R2 value of 0.75 while series 2 is the 95% 

prediction curve for PPV prediction with 95% confidence 

interval. 

 

 
 

Figure 11. Graph between predicted PPV vales by random 

forest VS scaled distance 

 

 
 

Figure 12. Graph between predicted PPV vales by ANN VS 

scaled distance 

Figure 11 shows relation between the scaled distance and 

predicted PPV by random forest method. Series 1 represents 

the best fit curve on the predicted values with R2 value of 

0.7521 while series 2 is the 95% prediction curve for PPV 

prediction with 95% confidence interval. 

Figure 12 shows relation between the scaled distance and 

predicted PPV by random forest method. Series 1 represents 

the best fit curve on the predicted values with R2 value of 

0.7006 while series 2 is the 95% prediction curve for PPV 

prediction with 95% confidence interval. 

 

Table 10. Summary of predicted values of PPV for Mine B 

 
Serial 

no ACTUAL 

PPV 

RANDOM 

FOREST 

ARTIFICIAL 

NEURAL 

NETWORK 

1 2.957 4.9148 5.504 

2 2.797 3.0214 5.344 

3 3.362 5.3198 5.909 

4 6.008 9.6589 8.555 

5 4.623 6.5808 7.17 

6 3.238 4.1958 5.785 

7 4.946 5.9038 7.493 

8 5.284 6.5487 7.831 

9 4.503 6.4608 7.05 

10 2.664 4.6218 4.211 

11 4.018 5.9758 5.565 

12 3.485 5.4428 6.032 

13 3.401 5.3588 4.948 

14 13.49 15.0874 19.6978 

15 2.232 4.1898 1.779 

16 2.129 1.524 1.676 

17 8.631 9.5871 14.688 

18 8.106 12.0634 10.653 

19 5.034 6.9918 7.581 

20 2.469 4.4268 5.016 

21 3.487 5.4448 6.034 

 

 
 

Figure 13. Graph between the comparison between the actual 

and predicted PPV values by Random forest 

 

Figure 13 is the graph between actual PPV and predicted 

PPV values by random forest with R2 value of 0.8715 shows 

they are in consonance with each other. 

Figure 14 is the graph between actual PPV and predicted 

PPV values by Artificial Neural Network with R2  value of 

0.8136 shows they are in consonance with each other. 

 

54



 

 
 

Figure 14. Graph between the comparison between the actual 

and predicted PPV values by Artificial neural network 

 

 
 

Figure 15. Graph between actual values of PPV for Mine B 

Vs Scaled Distance 

 

Figure 15 shows relation between the scaled distance and 

actual PPV. Series 1 represents the best fit curve on the 

predicted values with R2 value of 0.69 while series 2 is the 95% 

prediction curve for PPV prediction with 95% confidence 

interval. 

 

 
 

Figure 16. Graph between Predicted PPV values by Random 

Forest Vs scaled Distance 

Figure 16 shows relation between the scaled distance and 

actual PPV. Series 1 represents the best fit curve on the 

predicted values with R2 value of 0.7654 while series 2 is the 

95% prediction curve for PPV prediction with 95% confidence 

interval. 

 
 

Figure 17. Graph between Predicted PPV vales by ANN VS 

Scaled Distance 

 

 
 

Figure 18. Graph between the Actual PPV values of all 

mines Vs Scaled distance 

 

 
 

Figure 19. Graph between predicted values of PPV by 

random forest Vs Scaled Distance 

 

Figure 17 shows relation between the scaled distance and 

actual PPV. Series 1 represents the best fit curve on the 

predicted values with R2 value of 0.6687 while series 2 is the 

95% prediction curve for PPV prediction with 95% confidence 

interval. 

Figure 18 is the Graph between the Actual PPV values of 

all the 10 mines considered for the study and Scaled distance. 

Figure 19 is the Graph between the predicted PPV values of 

random forest by all the 10 mines considered for the study and 
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Scaled distance. 

 

 

5. CONCLUSION 

 

Total of the ten open cut coal mines of Jharia coalfields were 

selected under this study. Total of 325 blast data was 

considered during the study. It has been observed that random 

forest method provided predicted values of PPV which was 

closer than the ANN predicted values to the actual values 

obtained at mine site. Therefore we can conclude that Random 

forest method is better for prediction of PPV values. Further 

the prediction model using random forest method at 95% 

confidence level has been proposed which will be very handy 

and useful for mining engineers of all open cut mines of Jharia 

Coalfield. It will be very convenient to design the blast for 

controlling the blast induced ground vibration for greenfield 

projects too. 

 

 

REFERENCES  

 

[1] Agrawal H, Mishra AK. (2018). A study on influence of 

density and viscosity of emulsion explosive on its 

detonation velocity. Model. Meas. Control C 78(3): 316-

336. 

[2] Khandelwal M, Singh TN. (2006). Prediction of blast 

induced ground vibrations and frequency in opencast 

mine: A neural network approach. J. Sound Vib. 289(4-

5): 711-725. 

[3] Singh PK, Roy MP. (2010). Damage to surface structures 

due to blast vibration. Int. J. Rock Mech. Min. Sci. 47(6): 

949-961. 

[4] Agrawal H, Mishra AK. (2018). A study on influence of 

density and viscosity of emulsion explosive on its 

detonation velocity. Model. Meas. Control C 78(3): 316-

336. 

[5] Khandelwal M, Singh TN. (2006). Prediction of blast 

induced ground vibrations and frequency in opencast 

mine: A neural network approach. J. Sound Vib. 289(4–

5): 711-725. 

[6] Singh PK, Roy MP. (2010). Damage to surface structures 

due to blast vibration. Int. J. Rock Mech. Min. Sci. 47(6): 

949-961. 

[7] Agrawal AKMH. (2018). Probabilistic analysis on 

scattering effect of initiation systems and concept of 

modified charge per delay for prediction of blast induced 

ground vibrations. Measurement 130: 306-317. 

[8] Singh PK, Vogt W, Singh RB, Singh DP. (1996). 

Blasting side effects-Investigations in an opencast coal 

mine in India. Int. J. Surf. Min. Reclam. 10(4): 155-159. 

[9] Agrawal H, Mishra AK. (2018). Evaluation of initiating 

system by measurement of seismic energy dissipation in 

surface blasting. Arab. J. Geosci. 11(13): 345. 

[10] Liang Q, An Y, Zhao L, Li D, Yan L. (2011). 
Comparative study on calculation methods of blasting 

vibration velocity. Rock Mech. Rock Eng. 44(1): 93-101. 

[11] Khandelwal M, Singh TN. (2009). International journal 

of rock mechanics & mining sciences prediction of blast-

induced ground vibration using artificial neural network. 

Int. J. Rock Mech. Min. Sci. 46(7): 1214–1222. 

[12] Tiile RN. (2016). Artificial neural network approach to 

predict blast-induced ground vibration, airblast and rock 

fragmentation. Missouri University of Science and 

Technology. 

[13] Monjezi M, Ghafurikalajahi M, Bahrami A. (2011). 

Prediction of blast-induced ground vibration using 

artificial neural networks. Tunn. Undergr. Sp. Technol. 

26(1): 46–50. 

[14] Singh TN, Singh V. (2005). An intelligent approach to 

prediction and control ground vibration in mines. 

Geotech. Geol. Eng. 23(3): 249–262. 

[15] Hajihassani M, Armaghani DJ, Sohaei H, Mohamad ET, 

Marto A. (2014). Prediction of airblast-overpressure 

induced by blasting using a hybrid artificial neural 

network and particle swarm optimization. Appl. Acoust. 

80: 57-67. 

[16] Ataei M, Sereshki F. (2017). Improved prediction of 

blast-induced vibrations in limestone mines using 

Genetic Algorithm. J. Min. Environ. 8(2): 291-304. 

[17] Dong L, Li X, Xu M, Li Q. (2011). Comparisons of 

random forest and Support Vector Machine for 

predicting blasting vibration characteristic parameters. 

Procedia Eng. 26: 1772-1781. 

[18] Khandelwal M, Kankar PK, Harsha SP. (2010). 

Evaluation and prediction of blast induced ground 

vibration using support vector machine. Min. Sci. 

Technol. 20(1): 64-70. 

[19] Ranjan K, Deepankar C, Kapilesh B. (2012). Response 

of foundations subjected to blast loadings: State of the art 

review. 

[20] Konya CJ, Walter EJ. (2010). Rock blasting. US 

Department of Transportation Federal Highway 

Administration. 

[21] Srbulov M. (2010). Ground Waves Propagation. Ground 

Vibration Engineering, Springer 23-42. 

[22] Ainalis D, Ducarne L, Kaufmann O, Tshibangu JP, 

Verlinden O, Kouroussis G. (2017). Improved blast 

vibration analysis using the wavelet transform. 24th 

International Congress on Sound and Vibration, London. 

[23] Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-

Katheeri MM. (2016). Landslide susceptibility mapping 

using random forest, boosted regression tree, 

classification and regression tree, and general linear 

models and comparison of their performance at Wadi 

Tayyah Basin, Asir Region, Saudi Arabia. Landslides 

13(5): 839-856. 

[24] Rodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo 

M, Chica-Rivas M. (2015). Machine learning predictive 

models for mineral prospectivity: An evaluation of 

neural networks, random forest, regression trees and 

support vector machines. Ore Geol. Rev. 71: 804-818. 

[25] Muhammad K, Shah A. (2017). Minimising backbreak at 

the dewan cement limestone quarry using an artificial 

neural network. Arch. Min. Sci. 62(4): 795–806. 

[26] Sumathi S, Paneerselvam S. (2010). Computational 

intelligence paradigms: theory & applications using 

MATLAB. CRC Press.

 
 

 

 

56




